CFM Olympic Brainz Monitor complements neonatal bedside brain monitoring with automatic marking of possible seizure activity.

RecogniZe the problem

FACT: Neonatal seizures are usually clinically subtle, inconspicuous and difficult to recognize from the normal behaviors of the inter-ictal periods or physiological phenomena¹, making accurate recognition and treatment challenging for clinicians in the busy NICU environment.

FACT: Seizures are more common in the neonatal period than in any other time in life – as high as 57.5/1000 in < 1500g and 2.8/1000 in 2500-3999g.²

FACT: With moderate-to-severe hypoxic-ischemic encephalopathy (HIE), the incidence of seizures is > 50%.³

FACT: Term infants with seizures have very poor outcomes, with a 20% fatality rate in the neonatal period. Survivors have a 28% - 35% risk for severe neurodevelopmental disability and a 20% - 50% risk for epilepsy.⁴

RecogniZe the hospital challenge

FACT: In many institutions there is a lack of round-the-clock neurological resources to identify at-risk infants, increasing the potential for poor outcomes.

FACT: Conventional EEG (cEEG) using greater than 10 electrodes and concurrent video recording is the gold standard for bedside monitoring. However, cEEG is labor-intensive to both set up and interpret, and interpretation is rarely available in real time.⁴

FACT: Unidentified and untreated neonatal seizures can lead to long-term impairment or death.¹
RecogniZe the solution

The CFM Olympic Brainz Monitor’s RecogniZe option assists clinicians in identifying possible seizure activity:

- Developed for the NICU for ease of use by NICU staff – reducing the need to bring in neurology staff and equipment
- Helps ease identification and validation of seizure activity in the raw EEG signal

Monitoring for seizures with limited-channel amplitude-integrated EEG (aEEG) can be accurately interpreted. It also compares favorably with cEEG, and aligns with a general trend toward reduced seizure burden.4

It has been shown that the anatomical regions conventionally used for aEEG electrode placement yield a high sensitivity (78%) for electrical seizure detection.5

Ordering Information

<table>
<thead>
<tr>
<th>Item</th>
<th>Part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBM RecogniZe License Kit</td>
<td>OBM00092</td>
</tr>
</tbody>
</table>

References: